Microwave Periodic Acid-Methenamine (Jones) Silver Staining of Renal Glomerular Basement Membranes in Paraffin- and Glycol Methacrylate-Embedded Tissues

Stanley H. Shapiro
Department of Histotechnology
Nassau County Medical Center
East Meadow, NY 11554

Introduction
In our laboratory it was found that Jones’ periodic acid-methenamine silver method (PAM) was inconsistent in demonstrating lesions in renal glomerular basement membranes (BM). Snook’s reticulumb method appeared to be more reliable than the latter procedure. Jones’ method proved to have several drawbacks which rendered it difficult to control, including prolonged mordanting with noxious agents, the use of a buffer to regulate pH, lengthy incubation in hot silver with concomitant breakdown of staining solution, and the necessity of microscopic evaluation of staining intensity throughout silver incubation. A successful attempt was made to investigate requirements for the above parameters and establish reliable, simple, rapid, routine histopathologic evaluation of glomerular lesions in renal biopsies from tissues embedded in paraffin and in glycol methacrylate.

Staining Procedure
Fixation: 10% neutral buffered formalin

Tissue Sections: 4.0-μm paraffin section or 3.5-μm GMA sections

Reagents:
5% Zinc Chloride
Zinc chloride 2.5 g
Distilled water 50.0 mL

0.5% Periodic Acid (freshly prepared)
Periodic acid 0.25 g
Distilled water 50.0 mL

Silver Solution Stock
A: 5% Silver Nitrate
Silver nitrate 5.0 g
Distilled water 100.0 mL

B: 3% Methenamine (Hexamethylenetetramine)
Methenamine 3.0 g
Distilled water 100.0 mL

C: 5% Sodium Borate (Borax)
Sodium borate 5.0 g
Distilled water 100.0 mL

IN THIS ISSUE
Microwave Periodic Acid-Methenamine (Jones) Silver Staining of Renal Glomerular Basement Membranes in Paraffin- and Glycol Methacrylate-Embedded Tissues .. 13
Announcing the Winner of the Oldest Tissue-Tek® VIPnos .. 14
Tissue Processor Still in Use Context .. 15
Zinc Chloride: A New Additive for Improved H&E Stains 15
Rehydration of Biopsy Specimens to Facilitate Sectioning 17
Questions in Search of an Answer .. 17
The Sakura Electronic Product Catalog: Making Life Easier...Faster....and More Error-Free .. 20
Night From Your Keyboard .. 21
Application for Membership .. 21
Letter to the Editor .. 22
Get Connected for Fast Order Response .. 23
Histo-Humor .. 23
Meet You at Twilight at the Twilight Cafe.. 24

Impregnating Solution
Mix 5.0 mL of 5% silver nitrate into 100 mL of 3% methenamine. Refrigerate in an amber bottle for storage up to 1 month. Immediately before use, mix 25 mL of the above with 25 mL distilled water containing 2.0 mL of 5% sodium borate. Use acid-cleaned glassware throughout the procedure.

0.2% Gold Chloride
Gold chloride...0.2 g
Distilled water..100.0 mL

2% Sodium Thiosulfate
Sodium thiosulfate.................................2.0 g
Distilled water..100.0 mL

0.2% Light Green Solution
Light green SF yellowish...........................0.2 g
Distilled water..100.0 mL

All microwave steps are carried out in loosely covered plastic coplin jars.

Procedure
1. Decerate and hydrate paraffin sections. Immerse GMS slides in distilled water.
2. Mordant slides in 5% zinc chloride for 50 seconds at power level 8.
 This laboratory uses an Amana Radar Range RS50 microwave rated at 750 watts full power.
3. Wash in running water for 5 minutes. Rinse in distilled water.
4. Oxidize in freshly prepared 0.5% periodic acid for 20 minutes.
5. Wash in running water for 2 minutes. Rinse in distilled water.
6. Prepare impregnating silver solutions and microwave at power level 6 (450 watts) for 40 seconds.
7. Immerse slides — agitate each slide up and down in solution with wax-coated forceps.
8. Reheat at power level 6 for 40 seconds and agitate slides for an additional minute.
9. Wash in four changes of distilled water.
10. Tone in 0.2% gold chloride for 30 seconds.
11. Wash in four changes of distilled water.
12. Place in 2% sodium thiosulfate for 1 minute.
13. Wash in running water for 2 minutes.
14. Counterstain in 0.2% light green for 20 seconds.
15. Briefly wash in distilled water.
16. Dehydrate, clear, and mount.

Results
Basement membranes of renal glomeruli and reticular fibersblack
Background...light green

Discussion
Jones\(^1\) introduced PAM in 1951 as a method for demonstrating BM in renal glomeruli. The original method is tedious, labor intensive, and requires considerable skill on the part of the technologist in determining the stain end point. The use of microwave bombardment has helped overcome many of the shortcomings of silver stains. Brinn\(^2\) first utilized microwave acceleration of several silver stains. He found that not only did the microwave hasten the process, but it also helped yield cleaner, sharper silver deposition. Others have modified similar procedures for use with various plastics such as Epon or LR White embedding matrix.\(^3\)

In this laboratory, renal biopsies are routinely embedded in paraffin. However, in the event more rapid analysis or more criterial cytologic detail is required, we have found that rapid GMA processing and microwave PAM staining may be considered as a viable alternative.

Since lengthy mordanting in Zenker’s or Bouin’s fluid had been recommended earlier to improve PAM staining of BM,\(^4\) a successful attempt was made to introduce a rapid microwave mordant of 5% zinc chloride.\(^5\) Our impression is that this mordant effectively assists in enhancing the argyrophilia of BM without recourse to primary fixation in a picric acid- or mercuric chloride-based fixative and eliminates the potential need for dezenkerization.

The periodic acid solution should be freshly prepared. Silver impregnation is achieved rapidly in two steps in the microwave oven and generally is optimal under the conditions outlined without recourse to constant microscopic monitoring. This method has proven successful with both formalin-fixed paraffin sections and GMA-processed renal tissue (Fig 1) with generally lessened background staining than conventionally stained counterparts.
Announcing the Winner of the Oldest Tissue-Tek® VIP™ Tissue Processor Still in Use Contest

1981. It was a great year. The 52 Americans being held hostage in Iran were released; the first reusable spacecraft — the Space Shuttle Columbia — was sent into space and returned 2 days later; and Sandra Day O’Connor became the first woman appointed to the Supreme Court of the United States.

It was also the year in which a Tissue-Tek® VIP™ Tissue Processor, Model 4660, was installed in the Straub Clinic & Hospital, Inc. in Honolulu, HI. The winning Tissue-Tek VIP, Serial Number 4660-81001, was installed by Gary Toponce, according to the laboratory coordinator, Ms. Lynn M. Wong, who sent in the winning entry. Other entries included Tissue-Tek VIPs manufactured in 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, and 1991.

The world’s most reliable tissue processor, Tissue-Tek VIP, proves its world-record claim once again. Lynn, your limited edition VIP polo shirts are in the mail. Thanks to you — and to all of you — who took the time and made the effort to enter the contest.

Zinc Chloride: A New Additive for Improved H&E Stains

Joyce Moore, HTL (ASCP)
Jefferson Regional Medical Center
Department of Pathology
Pine Bluff, AR 71603

Introduction
Fixation of tissue has been, and still is, controversial issue. We have numerous fixatives and combinations of fixatives on the market. It is interesting that today we are still concerned with fixing the cells as soon as possible and protecting the tissue from the harms of the processing cycle. Selecting the correct fixative for our lab, we must work with many fixatives and then select the procedure that works best for us. The majority of the laboratories in our country use 10% neutral buffered formalin. Why? We have used it forever, it is cheap, and it is easy to use. It does provide consistent and adequate preservation. In addition, the pathologist can readily recognize the artifacts caused by formalin fixation.

Zinc chloride, used in the new zinc formalin fixatives, is an excellent mordant. The addition of the zinc (a heavy metal) reduces denaturation and attaches to the proteins. My pathologist suggested we try the zinc formalin for fixation. We used the same time frame for fixation that we were using for 10% formalin, which is 9 hours. This proved to be an unacceptable time for good fixation in the zinc formalin. We did not have the well-fixed tissue we were accustomed to working with, and the zinc formalin did not fix fat in the length of time was allowed. However, the pathologists did like the staining effect that we received by using the zinc formalin. Our H&E stains, special stains, and immunoperoxidase stains showed bright colors, good contrast, and good nuclear detail.

Taking into consideration the fact that the pathologists liked the improvements in staining, a new procedure was adopted for staining our slides using zinc chloride as a mordant. We have a line automatic stainer. We added 0.2 g of zinc chloride to the two absolute alcohol hydration steps on the stainer. The alcohol baths are changed daily each morning as the stainer is prepared for use. We discovered that this gave us the excellent staining that was seen with the zinc fixative procedure (Figs. 1 and 2). The zinc chloride acts as a mordant to link the dye to the tissue by attaching itself to the protein allowing the hematoxylin or other stain to attach better.
Procedure
The following procedure is used on our linear stainer, which incorporates 28 stations at 1 minute for each station.

<table>
<thead>
<tr>
<th>Station</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Xylene</td>
</tr>
<tr>
<td>4-5</td>
<td>Absolute alcohol with 0.2-g zinc chloride</td>
</tr>
<tr>
<td>6</td>
<td>95% Alcohol</td>
</tr>
<tr>
<td>7-8</td>
<td>Running tap water</td>
</tr>
<tr>
<td>9-13</td>
<td>Hematoxylin</td>
</tr>
<tr>
<td>14</td>
<td>Running tap water</td>
</tr>
<tr>
<td>15</td>
<td>Acid alcohol</td>
</tr>
<tr>
<td>16</td>
<td>Running tap water</td>
</tr>
<tr>
<td>17</td>
<td>Bluing solution</td>
</tr>
<tr>
<td>18</td>
<td>Running tap water</td>
</tr>
<tr>
<td>19</td>
<td>95% Alcohol</td>
</tr>
<tr>
<td>20-22</td>
<td>Eosin</td>
</tr>
<tr>
<td>23</td>
<td>95% Alcohol</td>
</tr>
<tr>
<td>24-26</td>
<td>Absolute alcohol</td>
</tr>
<tr>
<td>27-28</td>
<td>Xylene</td>
</tr>
</tbody>
</table>

Results: Nuclei — blue to blue-black
Cytoplasm, muscle, and collagen — various shades of pink to red-orange

Discussion
Formaldehyde alters the ability of certain positively charged tissue elements to bind eosin. Zinc chloride increases tissue basophilia of cationic or positively charged dyes. Because binding of hematoxylin by negatively charged groups is unaffected, the tissue reaction is basophilic.

Zinc chloride used in the two absolute alcohol hydration steps in our hydrating procedure gives us the bright distinct nuclear detail in our H&E stain, good staining of immunoperoxidase stains, special stains, and DNA hybridization. Using the zinc chloride on our automatic stainer is less expensive than using it in the fixative, there is no damage done on our processor by the zinc chloride, and we meet our objective of improved staining.

References
Rehydration of Biopsy Specimens to Facilitate Sectioning

Terri C. Staples, HT (ASCP), HTL
Baptist Health System
Birmingham, AL.

A common problem in the Histology laboratory is the overprocessing of small biopsy specimens. The overprocessing occurs when these small tissue fragments are placed on the "routine" overnight schedule with other surgical and/or autopsy specimens. The extended exposure to alcohol, clearing agents, and hot paraffin causes the removal of bound water molecules within the biopsy tissue, resulting in tissue sections that are less than adequate for diagnosis.

The Histology Laboratory at Montclair Baptist Medical Center has adopted a modified processing schedule to improve the quality of the tissue sections obtained from small biopsy specimens. However, there are occasions when a biopsy cassette does get processed overnight. When this occurs, they have been able to salvage the specimen by rehydration of the tissue in the paraffin block before sectioning.

Microscopic examination of biopsy specimens that are overprocessed demonstrates folds and wrinkles that may not be obvious on the waterbath (Figs 1 and 2). This may be due, in part, to the excess dehydration of the tissue, which causes the section to absorb water on the flotation bath, thus creating microscopic folds and wrinkles. Rehydration of the tissue during microtomy helps eliminate these folds and wrinkles by allowing the tissue to absorb water before it is placed on the bath. The resulting sections are of greater diagnostic quality (Figs 3 and 4). Although a modified processing schedule for biopsy specimens is preferred, it is possible to salvage overprocessed specimens with this technique.

Procedure
1. Carefully trim the block until the surface of the biopsy specimen is exposed.
2. Wet the exposed surface of the tissue with water from the tissue flotation bath using a small gauze sponge (alternatively, you may wet your thumb and place it on the surface of the block) for 10 to 15 seconds.
3. Obtain the next tissue ribbon and place it on the flotation bath.
4. Continue the process until the required number of sections has been obtained.

References
Tissue-Tek®
The reliability leader worldwide
Sakura is known throughout the world as one of the premier innovators and manufacturers of quality processing instruments for the histology and cytology laboratory. Our products are recognized as standards of reliability and performance in the industry, products you’re already familiar with—such as the Tissue-Tek® VIP™ Vacuum Infiltration Processor Series and Tissue-Tek® Tissue Embedding Console System.

There are more than 100 other Sakura Tissue-Tek® products you should get to know—and get to know more about.

They share more than the Tissue-Tek® name.

Proven reliability and performance.

The Tissue-Tek® DRS™ Slide Staining System and Tissue-Tek® SCA™ Coverslipper offer workstation consolidation with ease, convenience, and a minimum of hands-on technician time—without compromising the level of quality you demand in your laboratory.

And the Tissue-Tek® Cryo 2000™ Microtome/Cryostat—the choice for simplicity in frozen-section procedures.

Sakura also manufactures a full line of disposable products that you depend on for consistently superb performance—such as Tissue-Tek® Accu-Edge® Blade Systems, the Tissue-Tek® Uni-Cassette® Systems, and other cost-efficient products that give you an edge in controlling your laboratory’s expenses.

Look to Sakura for the needs of your histology and cytology laboratories.

Chances are that we’ve been meeting them for quite some time.

Proven Reliability
Questions in Search of an Answer

Question 1. We have been doing Warthin Starry stains on Helicobacter pylori for approximately 3 to 4 years. We usually have had excellent results. About 1 1/2 years ago, we noticed the edges of the tissue biopsies that we were staining were colorless. It was not consistent among the total number of slides in the coplin jar nor was it happening every day. We do Helicobacter stains depending on volume three times a week, usually Monday, Wednesday, and Friday. We QC the slides daily, and for weeks the stain will be fine and then will fail again.

In a coplin jar of five slides in the developer, two would develop normally and three would be colorless. Our control slide was always good. This rules out the staining solutions.

We processed the tissues on two different processors with two different processing times from regular overnight schedules to 10-minute schedules in each solution. I can’t see where it is a processing problem.

We have explored every avenue, including the physician performing the procedure, medication taken by the patient prior to the procedure, fixation time, etc. I have asked Freida Carson, Lamar Jones, and many other reputable histologists. No one seems to have an answer, but there must be one. Our pathologists have been very patient up until recently. Could it be a sectioning problem? We deparaffinize and hydrate a rack of campy’s together before we go into the 1% silver nitrate.

Also, silver precipitation sometimes poses a problem. We use plastic forceps when transferring the slides. I am open to suggestions on how to prevent this as well. Any and all suggestions will be greatly appreciated.

Terri DeCarli
Department of Pathology
North Arundel Hospital
Glen Burnie, MD

Question 2. Our laboratory has discovered that staining of gastrointestinal and endometrial biopsies can be greatly improved by controlling the temperature at which the tissue sections are dried prior to staining. At temperatures above 80°C, there is a tendency for the nuclei to take on a “ghost” appearance (Fig 1). Sections from the same tissue section dried at 60°C exhibit better nuclear detail (Fig 2). Can anyone explain the reason for this variation in staining?

Baptist Health System Laboratory
Birmingham, AL
The Sakura Electronic Product Catalog: Making Life Easier... Faster...and More Error-Free Right From Your Keyboard

In our last issue, we introduced you to the new Sakura Electronic Product Catalog. We would like to show you a few more details to give you a better flavor of what a unique combination of no-brainer ease and effortless ordering can do for you when it’s time to order from Sakura.

The entire program comes to you on three disks. Just follow the simple instructions to load them onto the hard drive of your IBM-compatible PC. Once loaded, just click on to the Sakura program group from your main menu. Here’s what you’ll see.

Now click on the Catalog tab to call up the product category of your choice. You can select from Grossing & Trimming, Processing, Embedding, Microtomy, Staining & Coverslipping, Cryotomy, Storage, Cytology, Reagents, Hematology, or access the entire catalog by clicking on “All.”

Here is the first screen in the Processing section.

This presents you with the Tissue-Tek® VIP™ System. There’s even a photo of the instrument along with text. Another box lets you move quickly through other categories — such as Rotary Tissue Processors, Reagents and Accessories, and All Processing Products. Yet another box area lists all products in that category by list number, product description, and alternate number. At the bottom of the page, you can search the entire catalog by item number, alternate number, or description.

When you’re ready to place your order, click on the Purchase Order tab at the top.

The Purchase Order screen asks that you fill in some information — just as you would do on a paper purchase order. You can even save this information to use it again later as default data: name, billing information, shipping information. Then enter the list number of the Sakura products you’d like to order. Hitting “enter” extends the list number to include the product description and price. You can even look in the database and search for the products you want. Enter the quantity, and the program automatically calculates the price extension.

To send in the order, you have a choice: you can print the P.O. and mail it to your local distributor, or fax it, or with your modem, e-mail it in.

We’re updating the Sakura Electronic Product Catalog all the time, so that you can have access to all 200+ products listed. For your complimentary copy of the Sakura Electronic Product Catalog, contact your local Sakura Area Manager or call 1-800-725-8723 and choose option #1.
In addition, the 1% solution (diluted chemical) measured 21 counts per second, or 0.005 μR/hr, on the surface, and at 3 cm, I was unable to detect radiation. On all other surfaces, where uranyl nitrate is used, there was no radiation detected.

Uranium nitrate is a dry chemical that is derived from uranium, a natural mining product. It can be stored in a regular storage container on your storage shelf. There is a detectable amount of radiation (11 counts per second or 0.01 mR/hr) at the surface of the container, which surrounds us all the time. A distance of 30 cm from the container was 2 to 3 times our background radiation (11 counts per second or 0.01 mR/hr) at the surface of the container. This amount of radiation is not a "real radiation hazard."

I hope this information helps you come to the same conclusion that we did. The storage and handling of uranium nitrate is not a "real radiation hazard."
Get Connected for Fast Order Response

Sakura offers state-of-the-art order entry for all customers. The industry calls it “EDI” — which is one acronym you don't have to remember. It stands for “Electronic Data Interchange.” Through our relationship with Baxter, and over the EDI network, we can turn orders around faster and help eliminate those clerical errors that can make everyone a little crazier than we already are. Current users of the EDI Network have enjoyed savings of both time and money as it is an easy tool to efficiently manage inventory.

The Sakura/Baxter electronic data interchange system works via a modem with Sakura's computer. As the system is now designed, data get transferred from Baxter to Sakura on a regular basis. All orders sent to Baxter on the EDI network get sent directly to Sakura and we ship them.

Baxter consolidates all routine orders for a particular hospital, so that all orders to your location can be delivered at the same time. Emergency orders, on the other hand, will be shipped directly from a Sakura or Baxter warehouse to your site as quickly as possible. The Sakura/Baxter EDI system is standard operating procedure. In other words, it allows for rapid and accurate shipment of your orders to avoid backorder situations or excessive inventory. This is the type of service you should expect from a first-class organization.

Current Sakura customers are encouraged to become part of the EDI network. It's fast, reliable, and really convenient with OnCall® EDI. If you'd like more information about it, give Dan Browning of Baxter Healthcare a call (847-689-5009) and he'll be happy to help you get connected.

Histo-Humor

<table>
<thead>
<tr>
<th>Slide 1</th>
<th>Slide 2</th>
<th>Slide 3</th>
<th>Slide 4</th>
<th>Slide 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hysteria Positive</td>
<td>Advanced Hysteria Positive</td>
<td>Negative Control</td>
<td>Borderline Hysteria Positive</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

submitted by
Caroline Hass, HT (ASCP)
St. Jerome Hospital
Batavia, NY
Meet You at Twilight at the Twilight Cafe

NSH in Albuquerque means meeting old and new friends under the starlight at the Twilight Cafe.

Imagine seeing them now. Imagine the bright, clear evening skies — the brilliant moonlight and countless stars. Now you're beginning to hear the music and feel the rhythm of a song you'd almost forgotten.

And, yes, it's time again for you to plan your visit to the one and only Twilight Cafe, at the Hyatt Grand Ballroom, where only the most select of NSH society venture to meet.

That's right. This year's NSH Party will be in Albuquerque, NM, at the Hyatt Regency, on Sunday evening, October 20, 1996. Sakura is proud this year to have Allegiance (Baxter) as a cosponsor of this now-traditional party to end all parties.

You're welcome to get fancy this year. Tuxedos and black ties and party dresses are preferred but, of course, optional. Ooh la la! Festivities, complete with the great food and wonderful music you remember, begin at 8:30 PM and go till 11:30 PM.

Mark your social calendar now. We'd love to see you and look forward to a great evening together under the stars at the Twilight Cafe at the Hyatt in

Don't Forget!

Location: Hyatt Regency Hotel, Grand Ballroom
Date: Sunday, October 20, 1996
Time: 8:30 PM to 11:30 PM